Invited Speaker


Prof. Qiang Song

Prof. Qiang Song

Northwestern Polytechnical University, China
Speech Title: CVD Grown Edge-rich Graphene for EMW Suppression and Other Applications

Abstract: High-performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave-transmitting matrices is of paramount importance to bring it to real-world application. Herein, a simple chemical vapor deposition (CVD) route for the direct growth of edge-rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported. The large O/C atomic ratio of CH3OH helps to build a mild oxidizing atmosphere and leads to a unique structure featuring open graphite nanosteps and freestanding nanoplanes, endowing the ERG/ Si3N4 hybrid with an appropriate balance between good impedance matching and strong loss capacity. Accordingly, the prepared materials exhibit superior electromagnetic wave absorption, far surpassing that of traditional CVD graphene and reduced graphene oxide-based materials, achieving an effective absorption bandwidth of 4.2 GHz covering the entire X band, with a thickness of 3.75 mm and a negligibly low loading content of absorbents.

Keywords: Graphene, chemical vapor deposition, microwave absorption.


Biography: Qiang Song received his Ph.D. degree from Northwestern Polytechnical University in 2014. Now he is the professor of the School of Materials Science and Engineering, Northwestern Polytechnical University. His main research interests focus on synthesis and characterization of graphene, and design and application of graphene-based multifunctional composites.